We live in a wonderfully complex universe, and we are curious about it by nature. Time and again we have wondered--- why are we here? Where did we and the world come from? What is the world made of? It is our privilege to live in a time when enormous progress has been made towards finding some of the answers. String theory is our most recent attempt to answer the last (and part of the second) question.
So, what is the world made of? Ordinary matter is made of atoms, which are in turn made of just three basic components: electrons whirling around a nucleus composed of neutrons and protons. The electron is a truly fundamental particle (it is one of a family of particles known as leptons), but neutrons and protons are made of smaller particles, known as quarks. Quarks are, as far as we know, truly elementary.
Our current knowledge about the subatomic composition of the universe is summarized in what is known as the Standard Model of particle physics. It describes both the fundamental building blocks out of which the world is made, and the forces through which these blocks interact. There are twelve basic building blocks. Six of these are quarks--- they go by the interesting names of up, down, charm, strange, bottom and top. (A proton, for instance, is made of two up quarks and one down quark.) The other six are leptons--- these include the electron and its two heavier siblings, the muon and the tauon, as well as three neutrinos.
There are four fundamental forces in the universe: gravity, electromagnetism, and the weak and strong nuclear forces. Each of these is produced by fundamental particles that act as carriers of the force. The most familiar of these is the photon, a particle of light, which is the mediator of electromagnetic forces. (This means that, for instance, a magnet attracts a nail because both objects exchange photons.) The graviton is the particle associated with gravity. The strong force is carried by eight particles known as gluons. Finally, the weak force is transmitted by three particles, the W+, the W- , and the Z.
The behavior of all of these particles and forces is described with impeccable precision by the Standard Model, with one notable exception: gravity. For technical reasons, the gravitational force, the most familiar in our every day lives, has proven very difficult to describe microscopically. This has been for many years one of the most important problems in theoretical physics-- to formulate a quantum theory of gravity.
In the last few decades, string theory has emerged as the most promising candidate for a microscopic theory of gravity. And it is infinitely more ambitious than that: it attempts to provide a complete, unified, and consistent description of the fundamental structure of our universe. (For this reason it is sometimes, quite arrogantly, called a 'Theory of Everything').
The essential idea behind string theory is this: all of the different 'fundamental ' particles of the Standard Model are really just different manifestations of one basic object: a string. How can that be? Well, we would ordinarily picture an electron, for instance, as a point with no internal structure. A point cannot do anything but move. But, if string theory is correct, then under an extremely powerful 'microscope' we would realize that the electron is not really a point, but a tiny loop of string. A string can do something aside from moving--- it can oscillate in different ways. If it oscillates a certain way, then from a distance, unable to tell it is really a string, we see an electron. But if it oscillates some other way, well, then we call it a photon, or a quark, or a ... you get the idea. So, if string theory is correct, the entire world is made of strings!
Perhaps the most remarkable thing about string theory is that such a simple idea works--- it is possible to derive (an extension of) the Standard Model (which has been verified experimentally with incredible precision) from a theory of strings. But it should also be said that, to date, there is no direct experimental evidence that string theory itself is the correct description of Nature. This is mostly due to the fact that string theory is still under development. We know bits and pieces of it, but we do not yet see the whole picture, and we are therefore unable to make definite predictions. In recent years many exciting developments have taken place, radically improving our understanding of what the theory is.
Wednesday, October 27, 2010
Wednesday, October 13, 2010
Black Holes
There are many popular myths concerning black holes , many of them perpetuated by Hollywood. Television and movies have portrayed them as time-traveling tunnels to another dimension, cosmic vacuum cleaners sucking up everything in sight, and so on. It can be said that black holes are really just the evolutionary end point of massive star . But somehow, this simple explanation makes them no easier to understand or less mysterious.
Black Holes: What Are They?
Black holes are the evolutionary endpoints of stars at least 10 to 15 times as massive as the Sun. If a star that massive or larger undergoes a supernova explosion, it may leave behind a fairly massive burned out stellar remnant. With no outward forces to oppose gravitational forces, the remnant will collapse in on itself. The star eventually collapses to the point of zero volume and infinite density, creating what is known as a " singularity ". Around the singularity is a region where the force of gravity is so strong that not even light can escape. Thus, no information can reach us from this region. It is therefore called a black hole, and its surface is called the " event horizon ". But contrary to popular myth, a black hole is not a cosmic vacuum cleaner. If our Sun was suddenly replaced with a black hole of the same mass, the Earth's orbit around the Sun would be unchanged. (Of course the Earth's temperature would change, and there would be no solar wind or solar magnetic storms affecting us.) To be "sucked" into a black hole, one has to cross inside the schwarzschild radius . At this radius, the escape speed is equal to the speed of light, and once light passes through, even it cannot escape.The Schwarzschild radius can be calculated using the equation for escape speed:
If We Can't See Them, How Do We Know They're There?
However, if a black hole passes through a cloud of interstellar matter , or is close to another "normal" star, the black hole can accerete matter into itself. As the matter falls or is pulled towards the black hole, it gains kinetic energy, heats up and is squeezed by tidal forces. The heating ionizes of ions , and when the atoms reach a few million kelvin, they emit X-rays . The X-rays are sent off into space before the matter crosses the Schwarzschild radius and crashes into the singulatrity. Thus we can see this X-ray emission.
Binary X-ray sources are also places to find strong black hole candidates. A companion star is a perfect source of infalling material for a black hole. A binary system also allows the calculation of the black hole candidate's mass. Once the mass is found, it can be determined if the candidate is a neutron star or a black hole, since neutron stars always have masses of about 1.5 times the mass of the Sun. Another sign of the presence of a black hole is its random variation of emitted X-rays. The infalling matter that emits X-rays does not fall into the black hole at a steady rate, but rather more sporadically, which causes an observable variation in X-ray intensity. Additionally, if the X-ray source is in a binary system, and we see it from certain angles, the X-rays will be periodically cut off as the source is eclisped by the companion star. When looking for black hole candidates, all these things are taken into account. Many X-ray satellite have scanned the skies for X-ray sources that might be black hole candidates.
Cygnus X-1 (Cyg X-1) is the longest known of the black hole candidates. It is a highly variable and irregular source, with X-ray emission that flickers in hundredths of a second. An object cannot flicker faster than the time required for light to travel across the object. In a hundredth of a second , light travels 3,000 kilometers. This is one fourth of Earth's diameter! So the region emitting the X-rays around Cyg X-1 is rather small. Its companion star, HDE 226868 is a B0 supergiant with a surface temperature of about 31,000 K. spectroscopic observations show that the spectral line of HDE 226868 shift back and forth with a period of 5.6 days. From the mass-luminosityrelation, the mass of this supergiant is calculated as 30 times the mass of the Sun. Cyg X-1 must have a mass of about 7 solar masses, or else it would not exert enough gravitational pull to cause the wobble in the spectral lines of HDE 226868. Since 7 solar massis too large to be a white Dwarf or neutron star, it must be a black hole.
Nonetheless, there are now about 20 binaries (as of early 2009) for which the evidence for a black hole is much stronger than in Cyg X-1. The first of these, an X-ray transient called A0620-00, was discovered in 1975, and the mass of the compact object was determined in the mid-1980's to be greater than 3.5 solar masses. This very clearly excludes a neutron star, which has a mass near 1.5 solar masses, even allowing for all known theoretical uncertainties. The best case for a black hole is probably V404 Cygni, whose compact star is at least 10 solar masses. With improved instrumentation, the pace of discovery has accelerated, and the list of dynamically confirmed black hole binaries is growing rapidly.
What About All the Wormhole Stuff?
Unfortunately, wormholes are more science fiction than they are science fact. A wormhole is a theoretical opening in space-time that one could use to travel to far away places very quickly. The wormhole itself is two copies of the black hole geometry connected by a throat. The throat, or passageway, is called an Einstein-Rosen bridge. It has never been proven that wormholes exist, and there is no experimental evidence for them, but it is fun to think about the possibilities their existence might create.How an alternate theory of the universe exposes the war of words that underlies modern cosmology.
Theoretical physicists have recently been frustrated by a bold hypothesis concerning black holes—specifically, that they don’t exist.
In March, at the 22nd Pacific Coast Gravity Meeting in Santa Barbara, Calif., George Chapline, an applied physicist at Lawrence Livermore National Laboratory, gave a talk based on ideas he’s been incubating for several years. His goal: to amend astrophysics by applying theories of dark energy and condensed matter physics.
His work reinvents black holes as so-called “dark energy stars,” which are what is left over when matter transitions to dark energy as it passes a point of no return similar to a black hole’s event horizon. That redefinition, if correct, would invalidate much of the intellectual framework of traditional black holes.
Chapline’s ideas take inspiration from his colleague Robert Laughlin, a condensed matter physicist at Stanford University who won a Nobel for his work on quantum fluids.
Laughlin is quick to point out that the hubbub he and Chapline’s ideas have caused “is a battle of words rather than a battle of science.
“In science, you decide whose theory is right (or wrong) by means of an experiment,” he said, “not by polling experts.”
“Who wouldn’t want to be the researcher who dismantles Einstein and Hawking?”
Unfortunately for theoretical physicists, experimenting on the nature of the universe is not an easy undertaking. Revisionism of one sort or another is constantly occurring, due to the field’s heavier-than-normal reliance on theories based on observation, extrapolation and imagination.
“In some ways our playground is too big,” said Leonard Susskind, a theoretical particle physicist at Stanford and an outspoken critic of the Chapline-Laughlin theory.
“Practically speaking, much of our subject matter is inaccessible to direct experimentation,” he continued. “It doesn’t make the science any less valid—we didn’t need to go to the Moon to know that it wasn’t made of cheese.”
But indirection, inference and, ultimately, guesswork all chafe against some of science’s core values. Understandably, some researchers inevitably suggest less-fuzzy alternatives, which is how Chapline and Laughlin see their work.
“George and I made a very plausible case that general relativity, as we have observed it experimentally, could be perfectly true, and yet fail to describe a black hole event horizon properly,” said Laughlin. “What would allow this to happen is failure of the relativity principle on very short-length scales.”
His and Chapline’s model, he argues, fixes violations of quantum mechanics—such as information loss and the freezing of time at a black hole’s event horizon— in traditional black hole models. Laughlin notes that the argument may offend his peers, but that they have no valid criticism of his and his partner’s arguments. He insists their redefinition is correct.
“The point is that there is no way to tell one way or the other right now,” he said. “If there were, there would be no controversy.”
The Chapline-Laughlin hypothesis will linger like most cosmological theories, which are only partially or indirectly testable as well as often incomplete and replete with corrections needed to describe the universe we actually observe. The process of pinning on these amendments can get messy.
“This is starting to bug a lot of people,” said Geoff Marcy, an astronomer at the University of California at Berkeley. “You can end up with a patchwork that’s so ad hoc, with so many after-the-fact add-ons and addenda and caveats, that you might as well throw the whole thing out.”
Chapline and Laughlin face an uphill battle among the many theoretical physicists who have already devised their own fixes for the quantum violations of black holes either via string theory or a concept called “black hole evaporation,” wherein two particles fluctuate at the event horizon of a black hole so that one is sucked in while the other is shot out, making it seem as though the black hole is emitting the particle, or “evaporating.”
Samir Mathur, a physicist at the Ohio State University who has his own theories of black holes, which he calls “fuzzballs,” has no use for the Chapline-Laughlin theory.
“I feel comfortable dismissing it,” he said. “Their model does not account for the entropy of black holes, or for Hawking radiation. These are basic signatures of what black holes are. It appears that what is most appealing to them about their theory is that they are the ones who thought of it.”
For his part, Chapline suggests his critics are predictably lashing out at him using what he calls “the first law of physics,” where an idea is immediately derided if it questions well-ingrained notions.
“Experts don’t like it when you tell them they are not experts anymore, that books they have written are obsolete,” he said. “They don’t like to have to learn new things.”
Luboš Motl, a theoretical physicist at Harvard University, doesn’t buy the idea that black holes don’t exist. In fact, at Harvard, a NASA/Smithsonian partnership using the Chandra X-Ray Observatory has produced swarms of black hole data.
“Who wouldn’t want to be the researcher who dismantles Einstein and Hawking?” Motl said. “That is seductive. But this is a matter of ego, not science.”
Looking for Hawking Radiation in space is likely impossible with our current technology. But scientists here on Earth recently used flowing water to simulate a black hole and create event horizons, testing Stephen Hawking’s famous prediction that the event horizon creates particles and anti-particles.
Black holes resemble cosmic drains where space disappears like water draining out of a sink. Space seems to flow, and the closer one gets to the black hole, the faster it flows. At the event horizon, space appears to reach the speed of light, so nothing, not even light, can escape beyond this point of no return.
Researchers from the University of St. Andrews and the University of Nice used a water channel to create analogues of black holes, simulating event horizons.
The scientists sent waves against the current, varied the water speed and the wavelength, and filmed the waves with video
They used a 30-meter-long water channel with a powerful pump on one end and a wave machine on the other, which is normally used to test the environmental impact of currents and waves on coasts or the hulls of submarines.
While the water didn’t create anti-particles, the researchers may have seen “anti-waves.” Normal waves heave up and down in the direction they move, whereas anti-waves do the opposite.
One of the researchers, Professor Ulf Leonhardt said, “It is probably impossible to observe the Hawking radiation of black holes in space, but something like the radiation of black holes can be seen on Earth, even in something as simple as flowing water.”
“We definitely have observed these negative-frequency waves. These waves were tiny, but they were still significantly stronger than expected. However, our experiment does not completely agree with theory and so much work remains to be done to understand exactly what happens at the event horizon for water waves.”
Their research will be published in the New Journal of Physics.
What is "causality" and what does it have to do with time travel?
What do we mean by time travel?
The allowed time travellers
The forbidden time travellers
How does the Special Theory of Relativity work?
The Lorentz transformation
|
Why was the Special Theory of Relativity needed?
The velocity addition problem
V = U + V'
SPACE TIME
Geometry is "measuring the Earth"
L12 + L22 = LH2where L1 and L2 are the lengths of the two legs of the right triangle shown in the figure, and LH is the length of the hypotenuse of that right triangle.
Who was Pythagoras?
Subscribe to:
Posts (Atom)